Page 62 - My FlipBook
P. 62

ЭРДЭМ ШИНЖИЛГЭЭНИЙ БҮТЭЭЛИЙН ЭМХЭТГЭЛ                                     “Эрдмийн чуулган-2023”



                vdma.org   -    VDMA.”    [Online].  Available:  [11] H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films,
                https://www.vdma.org/international-technology-roadmap-  vol. 480–481, pp. 426–432, 2005.
                photovoltaic. [Accessed: 15-Mar-2023].        [12] T. Tanaka et al., “Preparation of Cu2ZnSnS4 thin films by hybrid
             [3]  W. Shockley  and H. J.  Queisser,  “Detailed balance  limit  of   sputtering,” J. Phys. Chem. Solids, vol. 66, no. 11, pp. 1978–1981,
                efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no.   2005.
                3, pp. 510–519, Mar. 1961.                    [13] J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, “New
             [4]  C. Xiao, “Next generation solar: How TOPCon, heterojunction   routes to sustainable photovoltaics: Evaluation of Cu 2ZnSnS4 as
                and other n-type technologies are striving for market share,” 2021.   an alternative absorber material,” Phys. Status Solidi Basic Res.,
                [Online].  Available: https://www.pv-tech.org/next-generation-  vol. 245, no. 9, pp. 1772–1778, 2008.
                solar-how-topcon-heterojunction-and-other-n-type-technologies-  [14] M. Gansukh, “Pulsed Laser Deposition  of  Cu2ZnSnS4 Solar
                are-striving-for-market-share/.                  Cells: Alternative  Routes and  Optimization.” Technical
             [5]  Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners   University of Denmark, 2020.
                for silicon solar cells,” Nat. Energy, vol. 1, no. 11, 2016.   [15] M. Gansukh et al., “Oxide route for production of Cu2ZnSnS4
             [6]  A. Hajijafarassar  et al., “Monolithic  thin-film chalcogenide–  solar cells by pulsed  laser  deposition,”  Sol. Energy Mater. Sol.
                silicon tandem solar  cells enabled by a diffusion barrier,”  Sol.   Cells, vol. 215, p. 110605, Sep. 2020.
                Energy Mater. Sol. Cells, vol. 207, p. 110334, Apr. 2020.   [16] X. H. Martin A. Green, Ewan D. Dunlop, Jochen Hohl-Ebinger,
             [7]  M. Valentini et al., “Fabrication of monolithic CZTS/Si tandem   Masahiro Yoshita, Nikos  Kopidakis,  Karsten Bothe, David
                cells by development of the intermediate connection,” Sol. Energy,   Hinken,  Michael Rauer, “Solar cell efficiency  tables  (Version
                vol. 190, no. July, pp. 414–419, 2019.           60),” Prog. Photovoltaics, vol. 30, no. 7, pp. 687–701, 2022.
             [8]  M. Gansukh et al., “Cu2ZnSnS4 from oxide precursors grown by   [17] Y. E. Romanyuk et al., “Doping and alloying of kesterites,” JPhys
                pulsed laser deposition for monolithic  CZTS/Si tandem solar   Energy, vol. 1, no. 4, pp. 0–22, 2019.
                cells,” Appl. Phys. A Mater. Sci. Process., vol. 128, no. 3, pp. 1–  [18] A. Assar et al., “Gettering in PolySi/SiO xPassivating Contacts
                6, Mar. 2022.                                    Enables Si-Based  Tandem  Solar  Cells  with High Thermal and
             [9]  F. Martinho  et al., “Nitride-Based Interfacial  Layers for   Contamination Resilience,” ACS Appl. Mater. Interfaces, vol. 14,
                Monolithic Tandem Integration of New Solar Energy Materials on   no. 12, pp. 14342–14358, Mar. 2022.
                Si: The Case of CZTS,” ACS Appl. Energy Mater., vol. 3, no. 5,
                pp. 4600–4609, May 2020.
             [10] F. Martinho, “Challenges for the future of tandem photovoltaics
                on the  path to terawatt  levels: a  technology review,”  Energy
                Environ. Sci., vol. 14, no. 7, pp. 3840–3871, Jul. 2021.






























                                                           61
   57   58   59   60   61   62   63   64   65   66   67