Page 62 - My FlipBook
P. 62
ЭРДЭМ ШИНЖИЛГЭЭНИЙ БҮТЭЭЛИЙН ЭМХЭТГЭЛ “Эрдмийн чуулган-2023”
vdma.org - VDMA.” [Online]. Available: [11] H. Katagiri, “Cu2ZnSnS4 thin film solar cells,” Thin Solid Films,
https://www.vdma.org/international-technology-roadmap- vol. 480–481, pp. 426–432, 2005.
photovoltaic. [Accessed: 15-Mar-2023]. [12] T. Tanaka et al., “Preparation of Cu2ZnSnS4 thin films by hybrid
[3] W. Shockley and H. J. Queisser, “Detailed balance limit of sputtering,” J. Phys. Chem. Solids, vol. 66, no. 11, pp. 1978–1981,
efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 2005.
3, pp. 510–519, Mar. 1961. [13] J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, “New
[4] C. Xiao, “Next generation solar: How TOPCon, heterojunction routes to sustainable photovoltaics: Evaluation of Cu 2ZnSnS4 as
and other n-type technologies are striving for market share,” 2021. an alternative absorber material,” Phys. Status Solidi Basic Res.,
[Online]. Available: https://www.pv-tech.org/next-generation- vol. 245, no. 9, pp. 1772–1778, 2008.
solar-how-topcon-heterojunction-and-other-n-type-technologies- [14] M. Gansukh, “Pulsed Laser Deposition of Cu2ZnSnS4 Solar
are-striving-for-market-share/. Cells: Alternative Routes and Optimization.” Technical
[5] Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners University of Denmark, 2020.
for silicon solar cells,” Nat. Energy, vol. 1, no. 11, 2016. [15] M. Gansukh et al., “Oxide route for production of Cu2ZnSnS4
[6] A. Hajijafarassar et al., “Monolithic thin-film chalcogenide– solar cells by pulsed laser deposition,” Sol. Energy Mater. Sol.
silicon tandem solar cells enabled by a diffusion barrier,” Sol. Cells, vol. 215, p. 110605, Sep. 2020.
Energy Mater. Sol. Cells, vol. 207, p. 110334, Apr. 2020. [16] X. H. Martin A. Green, Ewan D. Dunlop, Jochen Hohl-Ebinger,
[7] M. Valentini et al., “Fabrication of monolithic CZTS/Si tandem Masahiro Yoshita, Nikos Kopidakis, Karsten Bothe, David
cells by development of the intermediate connection,” Sol. Energy, Hinken, Michael Rauer, “Solar cell efficiency tables (Version
vol. 190, no. July, pp. 414–419, 2019. 60),” Prog. Photovoltaics, vol. 30, no. 7, pp. 687–701, 2022.
[8] M. Gansukh et al., “Cu2ZnSnS4 from oxide precursors grown by [17] Y. E. Romanyuk et al., “Doping and alloying of kesterites,” JPhys
pulsed laser deposition for monolithic CZTS/Si tandem solar Energy, vol. 1, no. 4, pp. 0–22, 2019.
cells,” Appl. Phys. A Mater. Sci. Process., vol. 128, no. 3, pp. 1– [18] A. Assar et al., “Gettering in PolySi/SiO xPassivating Contacts
6, Mar. 2022. Enables Si-Based Tandem Solar Cells with High Thermal and
[9] F. Martinho et al., “Nitride-Based Interfacial Layers for Contamination Resilience,” ACS Appl. Mater. Interfaces, vol. 14,
Monolithic Tandem Integration of New Solar Energy Materials on no. 12, pp. 14342–14358, Mar. 2022.
Si: The Case of CZTS,” ACS Appl. Energy Mater., vol. 3, no. 5,
pp. 4600–4609, May 2020.
[10] F. Martinho, “Challenges for the future of tandem photovoltaics
on the path to terawatt levels: a technology review,” Energy
Environ. Sci., vol. 14, no. 7, pp. 3840–3871, Jul. 2021.
61